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1 Introduction

Quantum-like modeling of decision making was triggered by three types of psychological
experiments that showed the conjunction and disjunction fallacies and the order effect, chal-
lenging the application of classical probability theory to cognition [1, 2, 3]. Quantum prob-
ability theory was found to be able to account for such phenomena [4, 5, 6]. The essential
mathematical aspects of quantum theory that came in handy were the representation of
states by vectors in a Hilbert space rather than by points in phase space and the generally
non-commuting structure of the operators acting on such states. However, quantum theory
was developed to deal with microscopic entities like electrons and atoms that showed coher-
ence effects (such as interference and entanglement) absent in macroscopic objects like chairs
and tables. It is far from clear how the human brain, a hot and noisy macroscopic system,
can act as if it were a quantum information processor. Quantum information processing
is possible only if one uses qubits or quantum bits. A qubit is the basic unit of quantum
information. Unlike the classical binary bit physically realized with a two-state (on-off) de-
vice, a qubit is a two-state quantum mechanical system. It is the simplest quantum system
displaying the peculiarity of quantum mechanics, namely the superposition of two orthog-
onal states. One can also have qutrits and other multiple state systems. These provide an
inherent parallel processing capacity to quantum computers which classical computers do
not have. This should enable them to solve certain problems much faster than any classical
computer using the best currently known algorithms.

Hence, if the information processings carried out by biological, social or financial systems
show some essentially quantum-like behaviour, the systems must necessarily be quantum me-
chanical themselves. But there is no compelling evidence of that as yet. On the contrary, all
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evidence points to the fact that macroscopic systems are classical. Quantum mechanics itself
leads to the conclusion that an approximately macroscopic world emerges as a consequence of
decoherence [7]. Decoherence is the absence of superposition of macroscopic states, and it is
attributed to interactions between quantum systems and the larger macroscopic environment
from which they can never be completely isolated. Hence, the assumption that inherently
macroscopic entities like biological, economic and financial systems behave in some ways like
quantum systems is difficult to justify.

There is another problem too with quantum-like modeling of cognition, namely that it
is afflicted with the same controversies over interpretations as quantum mechanics, arising
fundamentally from the measurement problem which remains unsolved even after nearly a
century of incessant attempts to solve it [8].

Clearly, an alternative theoretical structure that does not suffer from the above difficulties
would be preferable. The main purpose of this paper is to suggest that such an alternative
indeed exists in classical optical theory.

The two main features of quantum mechanics that make it attractive to model non-
classical cognitive behaviour like the conjunction and disjunction fallacies and the order
effect are (a) coherence (exemplified by interference and entanglement phenomena) and (b)
the occurrence of non-commuting observables. However, coherence in classical optics has
been known since the days of Thomas Young and Augustin-Jean Fresnel in early nineteenth
century, and consequently, like quantum mechanical states, classical optical states can also be
described by vectors in Hilbert spaces. In the last couple of decades even entanglement and
Bell violations have been observed with classical optical beams [9, 10]. Hence, there is a close
similarity between the mathematical structures of classical optics and quantum mechanics
[11]. Furthermore, the famous Poincaré sphere representation of polarization states in optics
is spherically symmetric, making it invariant under the orthogonal transformation group
O(3) which in non-Abelian. Representing cognitive states by the states on a Poincaré-like
sphere therefore enables the order effect also to be accounted for without necessarily invoking
quantum mechanical non-commuting operators.

Finally, it was Niels Bohr who first recognized that contextuality and complementarity
which play important roles in quantum mechanics are also inherent in the wider field of
psychology and human knowledge [12]. This aspect of human knowledge is at odds with
any two-valued logic such as Aristotelian logic that underpins classical probability theory.
Interestingly, many-valued logic systems existed in ancient India. Particular mention must
be made of the chatus.kot.i system of Buddhist logic and the syādvāda system of Jaina logic
which can be formalized as paraconsistent systems [13]. In the syādvāda system, apart from
true and false propositions, there is a third kind of valid proposition called avaktavyam,
the unspeakable, and all of them as well as their four combinations are contextual. In other
words, all valid propositions are contextual and there can be only seven of them. That is
why it is known as saptabhanginaya, seven-fold predication. Hence, many-valued logics such
as syādvāda provide an appropriate philosophical foundation for mathematically modelling
cognitive phenomena which violate classical probability theory based on two-valued logic.

The essence of this logic system is captured by the parable of a group of blind men and an
elephant. Seven blind men who have never come across an elephant before learn and imagine
what it is like by touching it. Each blind man touches a different part of the elephant’s body
such as the side, ear or the tusk. They then describe the elephant to each other based on
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their limited experience of it, and ssuspecting the others to be dishonest, come to blows.
The moral is that humans have a tendency to claim absolute truth based on their limited
experience, ignoring other people’s experiences which may also be equally valid. In cognitive
modeling lived experience, which is necessarily contextual and limited, must play a central
role.

2 Contextuality, Logic and Probability

2.1 Contextuality

Contextuality is inherent in cognition and can be of many kinds. Five types of contextuality
have been considered so far in relation to cognitive modelling: the contextualities (i) of truth,
(ii) of being, (iii) of meaning, (iv) in physics and (v) contextuality by default [14]. That the
truth of a sentence and the meaning of a word depend on the context in which they occur is
quite obvious. Contextuality of being arose out of Heidegger’s concept of Dasein which is of
a being in practical engagement with an environment. It is related to contemporary issues
of AI [15].

Contextuality by Default (CbD) is a new theory of contextuality which rejects the general
view that ‘everything depends on everything else’ by a specific tenet, namely that the identity
of a ‘random variable’ representing a decision maker’s response is determined not only by
its content but also by the context, the systematically recorded conditions under which the
variable is observed [16, 17, 18].

Contextuality in physics has been defined in two essentially different ways, one within
quantum mechanics itself and the other within hidden variable interpretations of quantum
mechanics. In the first type defined by Bohr, measurement results depend on experimental
set ups, mutually exclusive experimental set ups giving rise to mutually exclusive phenom-
ena which are reconciled within the over arching Principle of Complementarity. However,
following the Kochen-Specker theorem concerning hidden variables [19], quantum contextu-
ality can also be defined as dependence of a measurement result of a quantum observable on
which other commuting observables are within the same measurement set.

There are two other types of contextuality relevant for cognition, namely contextuality
of sam. skāra and contextuality of scale. That which determines the disposition of a person is
called sam. skāra in Sanskrit, and this disposition changes every time a new act of cognition
occurs, leaving behind an imprint and changing the sam. skāra. Every person has her own
characteristic sam. skāra, and no two persons have exactly the same sam. skāra. This results
in different dispositions leading to different decisions even in almost identical circumstances.
The contextuality of scale can be understood with the example of a rose petal. It is a
symbol of beauty and love. Imagine looking at it through a series of ever more powerful
microscopes. The petal first dissolves into its internal structure of cells, then the atoms and
molecules which make up the cells, and finally the elementary particles which make up the
atoms and molecules. At the opposite end, think of moving away from the petal until it
disappears from our view. The rose petal is a rose petal only when viewed from the human
scale, not at every scale.
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2.2 Syādvāda Logic

This system of logic has three basic values: ‘true’, ‘false’ and ‘avaktavyam’. The Sanskrit
word avaktavyam means ‘not expressible in words or language’, i.e. unspeakable. This leads
to a seven-fold predication known as saptabhanginaya. The system is intrinsically contextual.
The three basic truth values are written as (i) syād asti (asti = true), (ii) syād nāsti (nāsti
= na + asti = false) and (iii) syād avaktavyam. The Sanskrit word syād has been variously
translated as ‘perhaps’, ‘may be’, ‘in some way’, ‘conditionally’, ‘from a certain perspective’
and so on. The most appropriate translation for our purpose would be ‘under certain con-
ditions’ or ‘in a certain context’. This is supported by the typical example given, namely if
not baked, a clay pot is black; if baked, it is red; and during the baking process its colour is
unspeakable (avaktavyam).

The other four compounds are (iv) syād asti cha nāsti cha (syād true and syād false), (v)
syād asti cha avaktavyam cha (syād true and syād unspeakable), (vi) syād nāsti cha avak-
tavyam cha (syād false and syād unspeakable), and (vii) syād asti cha nāsti cha avaktavyam
cha (syād true and syād false and syād unspeakable). The Sanskrit word cha means ‘and’.

Using the quantifier ∀ the first three can be written as (i) ∀x [φ(x)→ p(x)]; (ii) ∀x [φ(x)→
¬p(x)]; (iii) ∀x [φ(x) → q(x)], x standing for a variable (a placeholder) which ranges over
the domain of pots, φ for a well formed formula that specifies some condition (like for
example ‘baked’), p for some predicate (like say ‘red’) and q for the predicate avaktavyam.
An ‘example’ of the first of these three in plain English would be: for all x (say clay pots)
the condition φ(x) (say ‘baked’) implies that the pot is red.

The other four compounds may be written as
(iv) ∀x [φ(x)→ p(x) ∧ φ′(x)→ ¬p(x)] ∧ ¬[φ(x)↔ φ′(x)],
(v) ∀x [φ(x)→ p(x) ∧ φ′(x)→ q(x)] ∧ ¬[φ(x)↔ φ′(x)],
(vi) ∀x [φ(x)→ ¬p(x) ∧ φ′(x)→ q(x)] ∧ ¬[φ(x)↔ φ′(x)],
(vii) ∀x [φ(x) → p(x) ∧ φ′(x) → ¬p(x) ∧ φ′′(x) → q(x)] ∧ ¬[φ(x) ↔ φ′(x)] ∧ ¬[φ′(x) ↔

φ′′(x)] ∧ ¬[φ(x)↔ φ′′(x)].
Written in this formal way, the seven predications are self-consistent as they hold under

mutually exclusive conditions.

2.3 Probability

Logic and probability theory are related. P. C. Mahalanobis gives the example of the third
truth value avaktavyam or unspeakable in syādvāda as the conceptual origin of probability,
the uspeakable resolving into the speakable p and ¬p with certain probabilities [20]. Without
the third value the origin of probabilities remains obscure.

There are two types of probability that are predominantly used, Bayesian and frequentist.
Bayesian probability is probability as a ‘degree of belief’. It was introduced by Thomas Bayes
and subsequently promoted by Pierre-Simon Laplace and others. It was the mainstay for
more than a century before mathematicians introduced the frequentist idea based on counting
the occurrences of events to inject more objectivity into the notion of probability than the
subjective notion of a ‘degree of belief’ allowed. However, the pendulum started to swing
back to the older Bayesian idea by the middle of the 20th century, mainly because of the
large data bases created and the need for statistical analysis. Bayesian probability is again
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of two types, subjective and objective. Bayes himself as well as Laplace were ‘objectivists’.
The person who introduced a strictly subjective interpretation of Bayesian probability theory
was De Finetti [21, 22]. He viewed science as a human activity, a product of thought, having
probability as its main tool. To quote De Finnetti,

‘...no science will permit us say: this fact will come about, it will be thus and so because
it follows from a certain law, and that law is an absolute truth. Still less will it lead us to
conclude skeptically: the absolute truth does not exist, and so this fact might or might not
come about, it may go like this or in a totally different way, I know nothing about it. What
we can say is this: I foresee that such a fact will come about, and that it will happen in
such and such a way, because past experience and its scientific elaboration by human thought
make this forecast seem reasonable to me. (italics added) (as quoted in [22]).

With this in mind, Bayes’ definition of probability goes like this–an agent’s assignment
of probability p for the occurrence of an event E means that the agent is willing to bet any
amount up to p dollars for a coupon worth one rupee if E happens. Conversely, the agent is
willing to sell the coupon for any amount from p dollars and up. The probability turns out
to lie between 0 and 1, as in the frequentist case. But the difference is profound–decisions
for future actions are all based on ‘degrees of belief’, like the decision to take an umbrella
along if the forecast for rain is, say 70%.

When the degree of belief changes due to new information, the Bayesian probability
changes too. This crucially differentiates Bayesian probability from frequentist probability
which is cast in stone. Furthermore, the frequentist interpretation applies only to multiple
trials. It is an ‘ensemble property’ and nothing is said about single cases or individual events.
It is in fact impossible to make any valid probabilistic prediction regarding the outcome of
a single trial from the frequentist principle. As put by Appleby [23],

‘At the point of empirical application every piece of predictive probabilistic reasoning
presents us with a dilemma of the following general form “Given that the probability of X
is p are we, or are we not prepared to bet that X will in fact happen, in a single trial?” ...

Making the best decision in the face of uncertainty–calculating the best bet– is what
probability is for. However distasteful it may be to objectivist-minded philosophers, gambling
is in fact the point. Remove the gambling element–remove the concept of a single-case
probability–and you remove with it all the empirical applications. What remains is not
really probability at all, but abstract measure theory.’

We suggest that subjective Bayesian probability is more appropriate for decision mod-
elling than frequentist probability.

3 Classical Optical Modeling

It so happens that the methods of classical optics and quantum mechanics are amazingly
similar. It is on account of the fact that both use Hilbert spaces to represent states. The
only difference is in the use of non-commuting operators to represent observables in quantum
mechanics. There are no such operators in classical optics. Nevertheless, it is remarkable
that quitessentially quantum predictions like the Casimir Effect, anti-coincidence on a beam-
splitter as well as entanglement and Bell violations can be reproduced in classical optics by
introducing only one additional assumption, namely that there is a classical zero-point field
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with an energy density per unit frequency interval of ρ = ~ω3/(2π2c3) whose scale is set by ~,
the reduced Planck constant. This is known as stochastic electrodynamics. It is a relativistic
theory of point charges and electromagnetic fields based on three fundamental ideas:

1) The electromagnetic fields satisfy Maxwell’s equations with sources given by point
charged particles.

2) The particles experience forces due to electromagnetic fields and move according to
Newton’s second law.

3) The solution of the source-free Maxwell equations is given by a classical electromagnetic
zero-point radiation with a Lorentz-invariant spectrum of random classical radiation with an
energy per normal mode E(ω) = ~ω/2. A further assumption that is made is that photon
detectors have an intensity threshold just above the level of this noise, thus detecting only
signals.

A survey of stochastic electrodynamics will be found in Boyer [24] and a local realistic
analysis of optical tests of Bell inequalities in Marshall and Santos [25].

Interference

In classical optics a state is represented by a vector in a complex linear vector space.
This has the advantage that it is possible to add two vectors to get a third vector. This
addition of vectors in a complex linear vector space is precisely the superposition principle
we are looking for to account for interference effects.

Figure 1: Young’s double-slit experiment.

Let us now consider Young’s famous double-slit experiment with classical light. Let there
be two narrow slits A and B, separated by a distance small compared with the wavelength
of a coherent monochromatic light wave which passes through them. After passing through
the slits the waves diffract and spread out on the other side (as shown on the left hand side
in Fig. 1), overlap and finally arrive at a screen at a distance D. Let us denote the states
of the waves emanating from the slits and arriving at a point P on the screen by |ψA〉 and
|ψB〉. Then the resultant vector at P is

|Ψ〉P = |ψA〉+ eiθ|ψB〉 (1)

where θ is the phase difference between the two waves which travel different optical distances
from the slits to arrive at P . Let us now define a complex classical wave function or wave
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amplitude ψ(x) (x standing for a vector ~x) by taking the projection of the vector |ψ〉 on a
3-dimensional coordinate space: ψ(x) = 〈x|ψ〉. Then, the wave amplitudes are given by

ψ(x)P = ψ(x)A + eiθψ(x)B (2)

and the intensity of the resultant wave on the screen is given by

I = ||ψ(x)P ||2 = ||ψ(x)A||2 + ||ψ(x)B||2 + ||ψ(x)A||||ψ(x)B||
(
eiθ + e−iθ

)
(3)

= ||ψ(x)A||2 + ||ψ(x)B||2 + 2||ψ(x)A||||ψ(x)B|| cos θ (4)

This shows that as the point P varies along the screen D, the intensity of the light varies
sinusoidally. The first two terms determine the constant background intensity and the third
term describes the interference pattern. Dividing throughout by the total intensity, one
obtains

1 = pA + pB + 2
√
pApB cos θ. (5)

Since pA and pB are positive fractions, they can be interpreted as probabilities using the
Born rule which is also used in quantum mechanics to interpret Schrödinger wave functions
as probability amplitudes. The expression (5) is then the law of total probability, exactly
as in quantum mechanics. Notice that according to classical probability theory, the total
probability p should be given by p = pA + pB = 1. The law of total probability in classical
optics, as well as in quantum mechanics, has an additional term, the ‘interference term’.
This holds in every linear wave theory after application of the Born rule.

Entanglement

One of the interesting properties of light is that it can be polarized. The polarization is
conventionally defined by the direction of the electric field vector. In the case of polarized
light beams, the beam cross-sections have uniform polarization, i.e. the same polarization
everywhere. However, this is not generally true. Over the last couple of decades states of
classical light have been produced with cross-sections that are not uniformly polarized. As
is evident from Fig.2, the electric vector (shown by the red arrows) is not uniform over the
beam cross-section. These are examples of radially, azimuthally and spirally polarized light.
Such light is entangled in the sense that the beam has no definite polarization–the polariza-
tion is different at different positions of the beam cross-section, and hence polarization and
position cannot be factored, i.e. they are ‘nonseparable’ or entangled. Non-separability is the
most general feature of entanglement in quantum mechanics too. Entangled classical light
has been shown to violate Bell-like inequalities [10, 11], just like entangled quantum states.
Entangled classical light is thus mathematically analogous to quantum entangled states. How-
ever, classical light being completely described by Maxwell’s theory which forms the basis
of Einstein’s special theory of relativity, there is no ‘nonlocality’ in classical optics, though
nonlocality is claimed to be the quintessential feature of quantum entanglement.
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Figure 2: Radially, azimuthally and spirally polarized entangled light.

4 Concluding Remarks

It is thus clear that classical stochastic optics is mathematically completely analogous to
quantum mechanics, and hence classical optical modeling (COM) retains all advantages of
quantum-like modeling of cognition. It has the added advantage over quantum-like modeling
of being free of the interpretational problems of quantum mechanics as well as of the problems
of decoherence and nonlocality. It is however different from quantum-like modelling in two
ways. First, it takes as comprehensive a view of cognition as possible before attempting
to model it mathematically. In this regard use is made of a formalized version of the Jaina
many-valued logic system known as syādvāda which is intrinsically contextual together with a
subjective Bayesian approach to probability to reflect the first-person nature of consciousness
and cognition.

There have been many successful applications of quantum-like modelling of cognition to
social sciences such as in strategic organizational changes, financial markets which operate
under ambiguity and uncertainty, capital formation in economics and public policy analysis
[26, 27, 28, 29, 30]. The latest Human Development Report (HDR 2022) by UNDP is a
significant shift from the standard way of policy thinking. It places central importance on
cognitive science to understand decision making in this world of a ‘complex of uncertainties’.
The standard neoclassical approach is deeply limited in addressing such issues. If a suitable
global policy framework is to be developed addressing such uncertainties, new approaches
need to be developed. The framework we suggest in this paper is a fairly comprehensive
attempt in that direction, emphasizing the role of contextuality in cognition and decision
making, implying an underlying non-Boolean many-valued logical structure.

5 Acknowledgement

The authors are grateful to Mihir C Chakraborty for help with formalizing the syādvāda
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